tu carrito
el carrito está vacío

inicio productos noticias presupuesto trabajos contactar condiciones

banner_1 banner_2 banner_3 banner_4 banner_4 banner_4
noticias:

Noticias


Energía Solar Fotovoltaica.

Historia

El físico francés Alexandre-Edmond Becquerel fue el descubridor del efecto fotovoltaico en 1839, fundamental para el desarrollo de las células fotoeléctricas.

Estructura básica de una célula solar basada en silicio, y su principio de funcionamiento.

El término "fotovoltaico" se comenzó a usar en Reino Unido en el año 1849.28 Proviene del griego φώς: phos, que significa "luz", y de -voltaico, que proviene del ámbito de la electricidad, en honor al físico italiano Alejandro Volta.

El efecto fotovoltaico fue reconocido por primera vez unos diez años antes, en 1839, por el físico francés Alexandre-Edmond Becquerel, pero la primera célula solar no se fabricó hasta 1883. Su creador fue Charles Fritts, quien recubrió una muestra de selenio semiconductor con pan de oro para formar la unión. Este primitivo dispositivo presentaba una eficiencia menor del 1%, pero demostró de forma práctica que, efectivamente, producir electricidad con luz era posible. Los estudios realizados en el siglo XIX por Michael Faraday, James Clerk Maxwell, Nikola Tesla y Heinrich Hertz sobre inducción electromagnética, fuerzas eléctricas y ondas electromagnéticas, y sobre todo los de Albert Einstein en 1905, proporcionaron la base teórica al efecto fotoeléctrico, que es el fundamento de la conversión de energía solar a electricidad.

 

Principio de funcionamiento

Artículo principal: Célula fotovoltaica

En un semiconductor expuesto a la luz, un fotón de energía arranca un electrón, creando a la vez un «hueco» en el átomo excitado. Normalmente, el electrón encuentra rápidamente otro hueco para volver a llenarlo, y la energía proporcionada por el fotón, por tanto, se disipa en forma de calor. El principio de una célula fotovoltaica es obligar a los electrones y a los huecos a avanzar hacia el lado opuesto del material en lugar de simplemente recombinarse en él: así, se producirá una diferencia de potencial y por lo tanto tensión entre las dos partes del material, como ocurre en una pila.

Para ello, se crea un campo eléctrico permanente, a través de una unión pn, entre dos capas dopadas respectivamente, p y n. En las células de silicio, que son mayoritariamente utilizadas, se encuentran por tanto:

La capa superior de la celda, que se compone de silicio dopado de tipo n.nota. En esta capa, hay un número de electrones libres mayor que en una capa de silicio puro, de ahí el nombre del dopaje n, negativo. El material permanece eléctricamente neutro, ya que tanto los átomos de silicio como los del material dopante son neutros: pero la red cristalina tiene globalmente una mayor presencia de electrones que en una red de silicio puro.

La capa inferior de la celda, que se compone de silicio dopado de tipo p.nota  Esta capa tiene por lo tanto una cantidad media de electrones libres menor que una capa de silicio puro. Los electrones están ligados a la red cristalina que, en consecuencia, es eléctricamente neutra pero presenta huecos, positivos (p). La conducción eléctrica está asegurada por estos portadores de carga, que se desplazan por todo el material.

En el momento de la creación de la unión pn, los electrones libres de la capa n entran instantáneamente en la capa p y se recombinan con los huecos en la región p. Existirá así durante toda la vida de la unión, una carga positiva en la región n a lo largo de la unión (porque faltan electrones) y una carga negativa en la región en p a lo largo de la unión (porque los huecos han desaparecido); el conjunto forma la «Zona de Carga de Espacio» (ZCE) y existe un campo eléctrico entre las dos, de n hacia p. Este campo eléctrico hace de la ZCE un diodo, que solo permite el flujo de corriente en una dirección: los electrones pueden moverse de la región p a la n, pero no en la dirección opuesta y por el contrario los huecos no pasan más que de n hacia p.

En funcionamiento, cuando un fotón arranca un electrón a la matriz, creando un electrón libre y un hueco, bajo el efecto de este campo eléctrico cada uno va en dirección opuesta: los electrones se acumulan en la región n (para convertirse en polo negativo), mientras que los huecos se acumulan en la región dopada p (que se convierte en el polo positivo). Este fenómeno es más eficaz en la ZCE, donde casi no hay portadores de carga (electrones o huecos), ya que son anulados, o en la cercanía inmediata a la ZCE: cuando un fotón crea un par electrón-hueco, se separaron y es improbable que encuentren a su opuesto, pero si la creación tiene lugar en un sitio más alejado de la unión, el electrón (convertido en hueco) mantiene una gran oportunidad para recombinarse antes de llegar a la zona n. Pero la ZCE es necesariamente muy delgada, así que no es útil dar un gran espesor a la célula. Efectivamente, el grosor de la capa n es muy pequeño, ya que esta capa sólo se necesita básicamente para crear la ZCE que hace funcionar la célula. En cambio, el grosor de la capa p es mayor: depende de un compromiso entre la necesidad de minimizar las recombinaciones electrón-hueco, y por el contrario permitir la captación del mayor número de fotones posible, para lo que se requiere cierto mínimo espesor.

En resumen, una célula fotovoltaica es el equivalente de un generador de energía a la que se ha añadido un diodo. Para lograr una célula solar práctica, además es preciso añadir contactos eléctricos (que permitan extraer la energía generada), una capa que proteja la célula pero deje pasar la luz, una capa antireflectante para garantizar la correcta absorción de los fotones, y otros elementos que aumenten la eficiencia del misma.

 

Primera célula solar moderna.

El ingeniero estadounidense Russell Ohl patentó la célula solar moderna en el año 1946, aunque otros investigadores habían avanzado en su desarrollado con anterioridad: el físico sueco Sven Ason Berglund había patentado en 1914 un método que trataba de incrementar la capacidad de las células fotosensibles, mientras que en 1931, el ingeniero alemán Bruno Lange había desarrollado una fotocélula usando seleniuro de plata en lugar de óxido de cobre.

La era moderna de la tecnología solar no llegó hasta el año 1954, cuando los investigadores estadounidenses Gerald Pearson, Calvin S. Fuller y Daryl Chapin, de los Laboratorios Bell, descubrieron de manera accidental que los semiconductores de silicio dopado con ciertas impurezas eran muy sensibles a la luz. Estos avances contribuyeron a la fabricación de la primera célula solar comercial. Emplearon una unión difusa de silicio p–n, con una conversión de la energía solar de aproximadamente 6%, un logro comparado con las células de selenio que difícilmente alcanzaban el 0,5%.

Posteriormente el estadounidense Les Hoffman, presidente de la compañía Hoffman Electronics, a través de su división de semiconductores fue uno de los pioneros en la fabricación y producción a gran escala de células solares. Entre 1954 y 1960, Hoffman logró mejorar la eficiencia de las células fotovoltaicas hasta el 14%, reduciendo los costes de fabricación para conseguir un producto que pudiera ser comercializado.

Al principio, las células fotovoltaicas se emplearon de forma minoritaria para alimentar eléctricamente juguetes y en otros usos menores, dado que el coste de producción de electricidad mediante estas células primitivas era demasiado elevado: en términos relativos, una célula que produjera un vatio de energía mediante luz solar podía costar 250 dólares, en comparación con los 2 o 3 dólares que costaba un vatio procedente de una central termoeléctrica de carbón.

Las células fotovoltaicas fueron rescatadas del olvido gracias a la carrera espacial y a la sugerencia de utilizarlas en uno de los primeros satélites puestos en órbita alrededor de la Tierra. La Unión Soviética lanzó su primer satélite espacial en el año 1957, y Estados Unidos le seguiría un año después. La primera nave espacial que usó paneles solares fue el satélite norteamericano Vanguard, lanzado en marzo de 1958 (hoy en día el satélite más antiguo aún en órbita). En el diseño de éste se usaron células solares creadas por Peter Iles en un esfuerzo encabezado por la compañía Hoffman Electronics. El sistema fotovoltaico le permitió seguir transmitiendo durante siete años mientras que las baterías químicas se agotaron en sólo 20 días.

En 1959, Estados Unidos lanzó el Explorer. Este satélite llevaba instalada una serie de módulos solares, soportados en unas estructuras externas similares a unas alas, formados por 9600 células solares de la empresa Hoffman. Este tipo de dispositivos se convirtió posteriormente en una característica común de muchos satélites. Había cierto escepticismo inicial sobre el funcionamiento del sistema, pero en la práctica las células solares demostraron ser un gran éxito, y pronto se incorporaron al diseño de nuevos satélites.

Pocos años después, en 1962, el Telstar se convirtió en el primer satélite de comunicaciones equipado con células solares, capaces de proporcionar una potencia de 14 W. Este hito generó un gran interés en la producción y lanzamiento de satélites geoestacionarios para el desarrollo de las comunicaciones, en los que la energía provendría de un dispositivo de captación de la luz solar. Fue un desarrollo crucial que estimuló la investigación por parte de algunos gobiernos y que impulsó la mejora de los paneles fotovoltaicos. Gradualmente, la industria espacial se decantó por el uso de células solares de arseniuro de galio (GaAs), debido a su mayor eficiencia frente a las células de silicio. En 1970 la primera célula solar con heteroestructura de arseniuro de galio y altamente eficiente se desarrolló en la Unión Soviética por Zhorés Alfiórov y su equipo de investigación.

A partir de 1971, las estaciones espaciales soviéticas del programa Salyut fueron los primeros complejos orbitales tripulados en obtener su energía a partir de células solares, acopladas en estructuras a los laterales del módulo orbital, al igual que la estación norteamericana Skylab, pocos años después.

En la década de 1970, tras la primera crisis del petróleo, el Departamento de Energía de los Estados Unidos y la agencia espacial NASA iniciaron el estudio del concepto de energía solar en el espacio, que ambicionaba el abastecimiento energético terrestre mediante satélites espaciales. En 1979 propusieron una flota de satélites en órbita geoestacionaria, cada uno de los cuales mediría 5 x 10 km y produciría entre 5 y 10 GW. La construcción implicaba la creación de una gran factoría espacial donde trabajarían continuamente cientos de astronautas. Este gigantismo era típico de una época en la que se proyectaba la creación de grandes ciudades espaciales. Dejando aparte las dificultades técnicas, la propuesta fue desechada en 1981 por implicar un coste disparatado. A mediados de la década de 1980, con el petróleo de nuevo en precios bajos, el programa fue cancelado.

No obstante, las aplicaciones fotovoltaicas en los satélites espaciales continuaron su desarrollo. La producción de equipos de deposición química de metales por vapores orgánicos o MOCVD (Metal Organic Chemical Vapor Deposition) no se desarrolló hasta la década de 1980, limitando la capacidad de las compañías en la manufactura de células solares de arseniuro de galio. La primera compañía que manufacturó paneles solares en cantidades industriales, a partir de uniones simples de GaAs, con una eficiencia del 17% en AM0 (Air Mass Zero), fue la norteamericana Applied Solar Energy Corporation (ASEC). Las células de doble unión comenzaron su producción en cantidades industriales por ASEC en 1989, de manera accidental, como consecuencia de un cambio del GaAs sobre los sustratos de GaAs, a GaAs sobre sustratos de germanio.

La tecnología fotovoltaica, si bien no es la única que se utiliza, sigue predominando a principios del siglo XXI en los satélites de órbita terrestre. Por ejemplo, las sondas Magallanes, Mars Global Surveyor y Mars Observer, de la NASA, usaron paneles fotovoltaicos, así como el Telescopio espacial Hubble, en órbita alrededor de la Tierra. La Estación Espacial Internacional, también en órbita terrestre, está dotada de grandes sistemas fotovoltaicos que alimentan todo el complejo espacial, al igual que en su día la estación espacial Mir. Otros vehículos espaciales que utilizan la energía fotovoltaica para abastecerse son la sonda Mars Reconnaissance Orbiter, Spirit y Opportunity, los robots de la NASA en Marte.

El telescopio espacial Hubble, equipado con paneles solares, es puesto en órbita desde la bodega del transbordador Discovery en 1990.

La nave Rosetta, lanzada en 2004 en órbita hacia un cometa tan lejano del Sol como el planeta Júpiter (5,25 AU), dispone también de paneles solares; anteriormente, el uso más lejano de la energía solar espacial había sido el de la sonda Stardust, a 2 AU. La energía fotovoltaica se ha empleado también con éxito en la misión europea no tripulada a la Luna, SMART-1, proporcionando energía a su propulsor de efecto Hall. La sonda espacial Juno será la primera misión a Júpiter en usar paneles fotovoltaicos en lugar de un generador termoeléctrico de radioisótopos, tradicionalmente usados en las misiones espaciales al exterior del Sistema Solar. Actualmente se está estudiando el potencial de la fotovoltaica para equipar las naves espaciales que orbiten más allá de Júpiter.

 

Primeras aplicaciones terrestres.

Las aplicaciones aisladas de la red eléctrica supusieron uno de los primeros usos terrestres de la energía solar fotovoltaica, contribuyendo en gran medida a su desarrollo. En la imagen, faro de Noup Head en Reino Unido.

Desde su aparición en la industria aeroespacial, donde se ha convertido en el medio más fiable para suministrar energía eléctrica en los vehículos espaciales, la energía solar fotovoltaica ha desarrollado un gran número de aplicaciones terrestres. La primera instalación comercial de este tipo se realizó en 1966, en el faro de la isla Ogami (Japón), permitiendo sustituir el uso de gas de antorcha por una fuente eléctrica renovable y autosuficiente. Se trató del primer faro del mundo alimentado mediante energía solar fotovoltaica, y fue crucial para demostrar la viabilidad y el potencial de esta fuente de energía.

 

Las mejoras se produjeron de forma lenta durante las siguientes dos décadas, y el único uso generalizado se produjo en las aplicaciones espaciales, en las que su relación potencia a peso era mayor que la de cualquier otra tecnología competidora. Sin embargo, este éxito también fue la razón de su lento crecimiento: el mercado aeroespacial estaba dispuesto a pagar cualquier precio para obtener las mejores células posibles, por lo que no había ninguna razón para invertir en soluciones de menor costo si esto reducía la eficiencia. En su lugar, el precio de las células era determinado en gran medida por la industria de los semiconductores; su migración hacia la tecnología de circuitos integrados en la década de 1960 dio lugar a la disponibilidad de lingotes más grandes a precios relativamente inferiores. Al caer su precio, el precio de las células fotovoltaicas resultantes descendió en igual medida. Sin embargo, la reducción de costes asociada a esta creciente popularización de la energía fotovoltaica fue limitada, y en 1970 el coste de las células solares todavía se estimaba en 100 dólares por vatio ($/Wp).

 

Reducción de precios.

Uno de los pioneros del desarrollo de la tecnología fotovoltaica para uso terrestre, Elliot Berman, prueba diferentes módulos fotovoltaicos manufacturados por su compañía, Solar Power Corporation, a comienzos de los años 1970.

A finales de la década de 1960, el químico industrial estadounidense Elliot Berman estaba investigando un nuevo método para la producción de la materia prima de silicio a partir de un proceso en cinta. Sin embargo, encontró escaso interés en su proyecto y no pudo obtener la financiación necesaria para su desarrollo. Más tarde, en un encuentro casual, fue presentado a un equipo de la compañía petrolera Exxon que estaban buscando proyectos estratégicos a 30 años vista. El grupo había llegado a la conclusión de que la energía eléctrica sería mucho más costosa en el año 2000, y consideraba que este aumento de precio haría más atractivas a las nuevas fuentes de energía alternativas, siendo la energía solar la más interesante entre estas. En 1969, Berman se unió al laboratorio de Exxon en Linden, Nueva Jersey, denominado Solar Power Corporation (SPC).

Su esfuerzo fue dirigido en primer lugar a analizar el mercado potencial para identificar los posibles usos que existían para este nuevo producto, y rápidamente descubrió que si el coste por vatio se redujera desde los 100 $/Wp a cerca de 20 $/Wp surgiría una importante demanda. Consciente de que el concepto del “silicio en cinta” podría tardar años en desarrollarse, el equipo comenzó a buscar maneras de reducir el precio a 20 $/Wp usando materiales existentes. La constatación de que las células existentes se basaban en el proceso estándar de fabricación de semiconductores supuso un primer avance, incluso aunque no se tratara de un material ideal. El proceso comenzaba con la formación de un lingote de silicio, que se cortaba transversalmente en discos llamados obleas. Posteriormente se realizaba el pulido de las obleas y, a continuación, para su uso como células, se dotaba de un recubrimiento con una capa anti reflectante. Berman se dio cuenta de que las obleas de corte basto ya tenían de por sí una superficie frontal anti reflectante perfectamente válida, y mediante la impresión de los electrodos directamente sobre esta superficie, se eliminaron dos pasos importantes en el proceso de fabricación de células.

Su equipo también exploró otras formas de mejorar el montaje de las células en matrices, eliminando los costosos materiales y el cableado manual utilizado hasta entonces en aplicaciones espaciales. Su solución consistió en utilizar circuitos impresos en la parte posterior, plástico acrílico en la parte frontal, y pegamento de silicona entre ambos, embutiendo las células. Berman se dio cuenta de que el silicio ya existente en el mercado ya era “suficientemente bueno" para su uso en células solares. Las pequeñas imperfecciones que podían arruinar un lingote de silicio (o una oblea individual) para su uso en electrónica, tendrían poco efecto en aplicaciones solares. Las células fotovoltaicas podían fabricarse a partir del material desechado por el mercado de la electrónica, lo que traería como consecuencia una gran mejora de su precio.

Poniendo en práctica todos estos cambios, la empresa comenzó a comprar a muy bajo coste silicio rechazado a fabricantes ya existentes. Mediante el uso de las obleas más grandes disponibles, lo que reducía la cantidad de cableado para un área de panel dado, y empaquetándolas en paneles con sus nuevos métodos, en 1973 SPC estaba produciendo paneles a 10 $/Wp y vendiéndolos a 20 $/Wp, disminuyendo el precio de los módulos fotovoltaicos a una quinta parte en sólo dos años.

 

El mercado de la navegación marítima.

Boya marítima operada por la Administración Nacional Oceánica y Atmosférica (NOAA) de Estados Unidos.

SPC comenzó a contactar con las compañías fabricantes de boyas de navegación ofreciéndoles el producto, pero se encontró con una situación curiosa. La principal empresa del sector era Automatic Power, un fabricante de baterías desechables. Al darse cuenta de que las células solares podían comerse parte del negocio y los beneficios que el sector de baterías le producía, Automatic Power compró un prototipo solar de Hoffman Electronics para terminar arrinconándolo. Al ver que no había interés por parte de Automatic Power, SPC se volvió entonces a Tideland Signal, otra compañía suministradora de baterías formada por ex-gerentes de Automatic Power. Tideland presentó en el mercado una boya alimentada mediante energía fotovoltaica y pronto estaba arruinando el negocio de Automatic Power.

El momento no podía ser más adecuado, el rápido aumento en el número de plataformas petrolíferas en alta mar y demás instalaciones de carga produjo un enorme mercado entre las compañías petroleras. Como Tideland había tenido éxito, Automatic Power comenzó entonces a procurarse su propio suministro de paneles solares fotovoltaicos. Encontraron a Bill Yerkes, de Solar Power International (SPI) en California, que estaba buscando un mercado donde vender su producto. SPI pronto fue adquirida por uno de sus clientes más importantes, el gigante petrolero ARCO, formando ARCO Solar. La fábrica de ARCO Solar en Camarillo (California) fue la primera dedicada a la construcción de paneles solares, y estuvo en funcionamiento continuo desde su compra por ARCO en 1977 hasta 2011 cuando fue cerrada por la empresa SolarWorld.

Esta situación se combinó con la crisis del petróleo de 1973. Las compañías petroleras disponían ahora de ingentes fondos debido a sus enormes ingresos durante la crisis, pero también eran muy conscientes de que su éxito futuro dependería de alguna otra fuente de energía. En los años siguientes, las grandes compañías petroleras comenzaron la creación de una serie de empresas de energía solar, y fueron durante décadas los mayores productores de paneles solares. Las compañías ARCO, Exxon, Shell, Amoco (más tarde adquirida por BP) y Mobil mantuvieron grandes divisiones solares durante las décadas de 1970 y 1980. Las empresas de tecnología también realizaron importantes inversiones, incluyendo General Electric, Motorola, IBM, Tyco y RCA.

 

Perfeccionando la tecnología.

Vehículo eléctrico propulsado mediante energía fotovoltaica, vencedor del South African Solar Challenge.

En las décadas transcurridas desde los avances de Berman, las mejoras han reducido los costes de producción por debajo de 1 $/Wp, con precios menores de 2 $/Wp para todo el sistema fotovoltaico. El precio del resto de elementos de una instalación fotovoltaica supone ahora un mayor coste que los propios paneles.

A medida que la industria de los semiconductores se desarrolló hacia lingotes cada vez más grandes, los equipos más antiguos quedaron disponibles a precios reducidos. Las células crecieron en tamaño cuando estos equipos antiguos se hicieron disponibles en el mercado excedentario. Los primeros paneles de ARCO Solar se equipaban con células de 2 a 4 pulgadas (51 a 100 mm) de diámetro. Los paneles en la década de 1990 y principios de 2000 incorporaban generalmente células de 5 pulgadas (125 mm), y desde el año 2008 casi todos los nuevos paneles utilizan células de 6 pulgadas (150 mm). También la introducción generalizada de los televisores de pantalla plana a finales de la década de 1990 y principios de 2000 llevó a una amplia disponibilidad de grandes láminas de vidrio de alta calidad, que se utilizan en la parte frontal de los paneles.

En términos de las propias células, sólo ha habido un cambio importante. Durante la década de 1990, las células de polisilicio se hicieron cada vez más populares. Estas células ofrecen menos eficiencia que aquellas de monosilicio, pero se cultivan en grandes cubas que reducen en gran medida el coste de producción. A mediados de la década de 2000, el polisilicio dominaba en el mercado de paneles de bajo coste.

 

Aplicaciones de la energía solar fotovoltaica.

Repetidor de telecomunicaciones alimentado mediante paneles solares. En lugares de difícil acceso, la energía fotovoltaica permite abastecer energía eléctrica de forma práctica y competitiva.

Parquímetro abastecido mediante energía solar fotovoltaica, en Edimburgo, Reino Unido.

Calculadora solar básica Sharp.

Refugio de montaña alimentado mediante energía fotovoltaica, en el Parque nacional de Aigüestortes y Lago de San Mauricio (Pirineos, España).

La producción industrial a gran escala de paneles fotovoltaicos despegó en la década de 1980, y entre sus múltiples usos se pueden destacar:

 

Telecomunicaciones y señalización.

La energía solar fotovoltaica es ideal para aplicaciones de telecomunicaciones, entre las que se encuentran por ejemplo las centrales locales de telefonía, antenas de radio y televisión, estaciones repetidoras de microondas y otros tipos de enlaces de comunicación electrónicos. Esto es debido a que, en la mayoría de las aplicaciones de telecomunicaciones, se utilizan baterías de almacenamiento y la instalación eléctrica se realiza normalmente en corriente continua (DC). En terrenos accidentados y montañosos, las señales de radio y televisión pueden verse interferidas o reflejadas debido al terreno ondulado. En estos emplazamientos, se instalan transmisores de baja potencia (LPT) para recibir y retransmitir la señal entre la población local.

Las células fotovoltaicas también se utilizan para alimentar sistemas de comunicaciones de emergencia, por ejemplo en los postes de SOS (Teléfonos de emergencia) en carreteras, señalización ferroviaria, balizamiento para protección aeronáutica, estaciones meteorológicas o sistemas de vigilancia de datos ambientales y de calidad del agua.

 

Dispositivos aislados.

La reducción en el consumo energético de los circuitos integrados, hizo posible a finales de la década de 1970 el uso de células solares como fuente de electricidad en calculadoras, tales como la Royal Solar 1, Sharp EL-8026 o Teal Photon.

También otros dispositivos fijos que utilizan la energía fotovoltaica han visto aumentar su uso en las últimas décadas, en lugares donde el coste de conexión a la red eléctrica o el uso de pilas desechables es prohibitivamente caro. Estas aplicaciones incluyen por ejemplo las lámparas solares, bombas de agua, parquímetros, teléfonos de emergencia, compactadores de basura, señales de tráfico temporales o permanentes, estaciones de carga o sistemas remotos de vigilancia.

 

Electrificación rural.

En entornos aislados, donde se requiere poca potencia eléctrica y el acceso a la red es difícil, las placas fotovoltaicas se emplean como alternativa económicamente viable desde hace décadas. Para comprender la importancia de esta posibilidad, conviene tener en cuenta que aproximadamente una cuarta parte de la población mundial todavía no tiene acceso a la energía eléctrica.

En los países en desarrollo, muchos pueblos se encuentran situados en áreas remotas, a varios kilómetros de la red eléctrica más próxima. Debido a ello, se está incorporando la energía fotovoltaica de forma creciente para proporcionar suministro eléctrico a viviendas o instalaciones médicas en áreas rurales. Por ejemplo, en lugares remotos de India un programa de iluminación rural ha provisto iluminación mediante lámparas LED alimentadas con energía solar para sustituir a las lámparas de queroseno. El precio de las lámparas solares era aproximadamente el mismo que el coste del suministro de queroseno durante unos pocos meses. Cuba y otros países de Latinoamérica están trabajando para proporcionar energía fotovoltaica en zonas alejadas del suministro de energía eléctrica convencional. Estas son áreas en las que los beneficios sociales y económicos para la población local ofrecen una excelente razón para instalar paneles fotovoltaicos, aunque normalmente este tipo de iniciativas se han visto relegadas a puntuales esfuerzos humanitarios.

 

Sistemas de bombeo.

Los sistemas de bombeo fotovoltaico pueden utilizarse para proporcionar agua en sistemas de riego, agua potable en comunidades aisladas o abrevaderos para el ganado.

También se emplea la fotovoltaica para alimentar instalaciones de bombeo para sistemas de riego, agua potable en áreas rurales y abrevaderos para el ganado, o para sistemas de desalinización de agua.

Los sistemas de bombeo fotovoltaico (al igual que los alimentados mediante energía eólica) son muy útiles allí donde no es posible acceder a la red general de electricidad o bien supone un precio prohibitivo. Su coste es generalmente más económico debido a sus menores costes de operación y mantenimiento, y presentan un menor impacto ambiental que los sistemas de bombeo alimentados mediante motores de combustión interna, que tienen además una menor fiabilidad.

Las bombas utilizadas pueden ser tanto de corriente alterna (AC) como corriente continua (DC). Normalmente se emplean motores de corriente continua para pequeñas y medianas aplicaciones de hasta 3 kW de potencia, mientras que para aplicaciones más grandes se utilizan motores de corriente alterna acoplados a un inversor que transforma para su uso la corriente continua procedente de los paneles fotovoltaicos. Esto permite dimensionar sistemas desde 0,15 kW hasta más de 55 kW de potencia, que pueden ser empleados para abastecer complejos sistemas de irrigación o almacenamiento de agua.

 

Sistemas híbridos solar-diésel.

Debido al descenso de costes de la energía solar fotovoltaica, se está extendiendo asimismo el uso de sistemas híbridos solar-diésel, que combinan esta energía con generadores diésel para producir electricidad de forma continua y estable. Este tipo de instalaciones están equipadas normalmente con equipos auxiliares, tales como baterías y sistemas especiales de control para lograr en todo momento la estabilidad del suministro eléctrico del sistema.

Debido a su viabilidad económica (el transporte de diésel al punto de consumo suele ser costoso) en muchos casos se sustituyen antiguos generadores por fotovoltaica, mientras que las nuevas instalaciones híbridas se diseñan de tal manera que permiten utilizar el recurso solar siempre que está disponible, minimizando el uso de los generadores, disminuyendo así el impacto ambiental de la generación eléctrica en comunidades remotas y en instalaciones que no están conectadas a la red eléctrica. Un ejemplo de ello lo constituyen las empresas mineras, cuyas explotaciones se encuentran normalmente en campo abierto, alejadas de los grandes núcleos de población. En estos casos, el uso combinado de la fotovoltaica permite disminuir en gran medida la dependencia del combustible diésel, permitiendo ahorros de hasta el 70% en el coste de la energía.

Este tipo de sistemas también puede utilizarse en combinación con otras fuentes de generación de energía renovable, tales como la energía eólica.

 

Transporte y navegación marítima.

Equipo del Nuna 3, vehículo solar competidor en el World Solar Challenge.

Aunque la fotovoltaica todavía no se utiliza de forma generalizada para proporcionar tracción en el transporte, se está utilizando cada vez en mayor medida para proporcionar energía auxiliar en barcos y automóviles. Algunos vehículos están equipados con aire acondicionado alimentado mediante paneles fotovoltaicos para limitar la temperatura interior en los días calurosos, mientras que otros prototipos híbridos los utilizan para recargar sus baterías sin necesidad de conectarse a la red eléctrica. Se ha demostrado sobradamente la posibilidad práctica de diseñar y fabricar vehículos propulsados mediante energía solar, así como barcos y aviones, siendo considerado el transporte rodado el más viable para la fotovoltaica.

El Solar Impulse es un proyecto dedicado al desarrollo de un avión propulsado únicamente mediante energía solar fotovoltaica. El prototipo puede volar durante el día propulsado por las células solares que cubren sus alas, a la vez que carga las baterías que le permiten mantenerse en el aire durante la noche.

La energía solar también se utiliza de forma habitual en faros, boyas y balizas de navegación marítima, vehículos de recreo, sistemas de carga para los acumuladores eléctricos de los barcos, y sistemas de protección catódica. La recarga de vehículos eléctricos está cobrando cada vez mayor importancia.

 

Fotovoltaica integrada en edificios.

Marquesina solar situada en el aparcamiento de la Universidad Autónoma de Madrid (Madrid, España).

Proyecto BIPV ISSOL en la estación de ferrocarril Gare TGV de Perpignan, Francia.

Artículo principal: Fotovoltaica integrada en edificios

Muchas instalaciones fotovoltaicas se encuentran a menudo situadas en los edificios: normalmente se sitúan sobre un tejado ya existente, o bien se integran en elementos de la propia estructura del edificio, como tragaluces, claraboyas o fachadas.

Alternativamente, un sistema fotovoltaico también puede ser emplazado físicamente separado del edificio, pero conectado a la instalación eléctrica del mismo para suministrar energía. En 2010, más del 80% de los 9000 MW de fotovoltaica que Alemania tenía en funcionamiento por entonces, se habían instalado sobre tejados.

La fotovoltaica integrada en edificios (BIPV, en sus siglas en inglés) se está incorporando de forma cada vez más creciente como fuente de energía eléctrica principal o secundaria en los nuevos edificios domésticos e industriales, e incluso en otros elementos arquitectónicos, como por ejemplo puentes. Las tejas con células fotovoltaicas integradas son también bastante comunes en este tipo de integración.

Según un estudio publicado en 2011, el uso de imágenes térmicas ha demostrado que los paneles solares, siempre que exista una brecha abierta por la que el aire pueda circular entre los paneles y el techo, proporcionan un efecto de refrigeración pasiva en los edificios durante el día y además ayudan a mantener el calor acumulado durante la noche.

 

Fotovoltaica de conexión a red.

Una de las principales aplicaciones de la energía solar fotovoltaica más desarrollada en los últimos años, consiste en las centrales conectadas a red para suministro eléctrico, así como los sistemas de autoconsumo fotovoltaico, de potencia generalmente menor, pero igualmente conectados a la red eléctrica.

 

Componentes de una planta solar fotovoltaica.

Una planta solar fotovoltaica cuenta con distintos elementos que permiten su funcionamiento, como son los paneles fotovoltaicos para la captación de la radiación solar, y los inversores para la transformación de la corriente continua en corriente alterna. Existen otros, los más importantes se mencionan a continuación:

 

Paneles solares fotovoltaicos

Célula fotovoltaica

Artículo principal: Panel fotovoltaico

Generalmente, un módulo o panel fotovoltaico consiste en una asociación de células, encapsulada en dos capas de EVA (etileno-vinilo-acetato), entre una lámina frontal de vidrio y una capa posterior de un polímero termoplástico (frecuentemente se emplea el tedlar) u otra lámina de cristal cuando se desea obtener módulos con algún grado de transparencia. Muy frecuentemente este conjunto es enmarcado en una estructura de aluminio anodizado con el objetivo de aumentar la resistencia mecánica del conjunto y facilitar el anclaje del módulo a las estructuras de soporte.

Las células más comúnmente empleadas en los paneles fotovoltaicos son de silicio, y se puede dividir en tres subcategorías:

Las células de silicio monocristalino están constituidas por un único cristal de silicio, normalmente manufacturado mediante el proceso Czochralski. Este tipo de células presenta un color azul oscuro uniforme.

Las células de silicio policristalino (también llamado multicristalino) están constituidas por un conjunto de cristales de silicio, lo que explica que su rendimiento sea algo inferior al de las células monocristalinas. Se caracterizan por un color azul más intenso.

Las células de silicio amorfo. Son menos eficientes que las células de silicio cristalino pero también menos costosas. Este tipo de células es, por ejemplo, el que se emplea en aplicaciones solares como relojes o calculadoras.

Inversores

Un inversor solar instalado en una planta de conexión a red en Speyer, Alemania.

Artículo principal: Inversor (electrónica)

La corriente eléctrica continua que proporcionan los módulos fotovoltaicos se puede transformar en corriente alterna mediante un aparato electrónico llamado inversor e inyectar en la red eléctrica (para venta de energía) o bien en la red interior (para autoconsumo).

El proceso, simplificado, sería el siguiente:

Se genera la energía a bajas tensiones (380-800 V) y en corriente continua.

Se transforma con un inversor en corriente alterna.

En plantas de potencia inferior a 100 kW se inyecta la energía directamente a la red de distribución en baja tensión (400 V en trifásico o 230 V en monofásico).

Y para potencias superiores a los 100 kW se utiliza un transformador para elevar la energía a media tensión (15 ó 25 kV) y se inyecta en las redes de transporte para su posterior suministro. 

 

Seguidores solares

Planta solar situada en la Base de la Fuerza Aérea Nellis (Nevada, Estados Unidos). Estos paneles siguen el recorrido del Sol sobre un eje.

Artículo principal: Seguidor solar

El uso de seguidores a uno o dos ejes permite aumentar considerablemente la producción solar, en torno al 30% para los primeros y un 6% adicional para los segundos, en lugares de elevada radiación directa.

Los seguidores solares son bastante comunes en aplicaciones fotovoltaicas. Existen de varios tipos:

En dos ejes: la superficie se mantiene siempre perpendicular al Sol.

En un eje polar: la superficie gira sobre un eje orientado al sur e inclinado un ángulo igual a la latitud. El giro se ajusta para que la normal a la superficie coincida en todo momento con el meridiano terrestre que contiene al Sol.

En un eje azimutal: la superficie gira sobre un eje vertical, el ángulo de la superficie es constante e igual a la latitud. El giro se ajusta para que la normal a la superficie coincida en todo momento con el meridiano local que contiene al Sol.

En un eje horizontal: la superficie gira en un eje horizontal y orientado en dirección norte-sur. El giro se ajusta para que la normal a la superficie coincida en todo momento con el meridiano terrestre que contiene al Sol.

 

Cableado.

Conectores de un panel solar, utilizados para transportar la corriente continua generada por el mismo hasta el inversor, donde se transforma generalmente en corriente alterna para su posterior utilización.

Artículo principal: Conductor eléctrico

Es el elemento que transporta la energía eléctrica desde su generación, para su posterior distribución y transporte. Su dimensionamiento viene determinado por el criterio más restrictivo entre la máxima caída de tensión admisible y la intensidad máxima admisible. Aumentar las secciones de conductor que se obtienen como resultado de los cálculos teóricos aporta ventajas añadidas como:

Líneas más descargadas, lo que prolonga la vida útil de los cables.

Posibilidad de aumento de potencia de la planta sin cambiar el conductor.

Mejor respuesta a posibles cortocircuitos.

Mejora del performance ratio (PR) de la instalación.

 

Plantas de concentración fotovoltaica.

Seguidor solar dotado con paneles de concentración fotovoltaica, capaz de producir 53 kW. A su lado se encuentra el vehículo eléctrico Tesla Roadster, permitiendo apreciar su escala.

Artículo principal: Energía solar fotovoltaica de concentración

Otro tipo de tecnología en las plantas fotovoltaicas son las que utilizan una tecnología de concentración llamada CPV por sus siglas en inglés (Concentrated Photovoltaics) para maximizar la energía solar recibida por la instalación, al igual que en una central térmica solar. Las instalaciones de concentración fotovoltaica se sitúan en emplazamientos de alta irradiación solar directa, como son los países a ambas riberas del Mediterráneo, Australia, Estados Unidos, China, Sudáfrica, México, etc. Hasta el año 2006 estas tecnologías formaban parte del ámbito de investigación, pero en los últimos años se han puesto en marcha instalaciones de mayor tamaño como la de ISFOC (Instituto de Sistemas Solares Fotovoltaicos de Concentración) en Puertollano (Castilla La Mancha) con 3 MW suministrando electricidad a la red eléctrica.

La idea básica de la concentración fotovoltaica es la sustitución de material semiconductor por material reflectante o refractante (más barato). El grado de concentración puede alcanzar un factor de 1000 de tal modo que, dada la pequeña superficie de célula solar empleada, se puede utilizar la tecnología más eficiente (triple unión, por ejemplo). Por otro lado, el sistema óptico introduce un factor de pérdidas que hace recuperar menos radiación que la fotovoltaica plana. Esto, unido a la elevada precisión de los sistemas de seguimiento, constituye la principal barrera a resolver por la tecnología de concentración.

Recientemente se ha anunciado el desarrollo de plantas de grandes dimensiones (por encima de 1 MW). Las plantas de concentración fotovoltaica utilizan un seguidor de doble eje para posibilitar un máximo aprovechamiento del recurso solar durante todo el día.

 

El desarrollo de la energía solar fotovoltaica en el mundo.

Mapamundi de radiación solar. Los pequeños puntos en el mapa muestran el área total de fotovoltaica necesaria para cubrir la demanda mundial de energía usando paneles solares con una eficiencia del 8%.

 

Históricamente, los Estados Unidos lideraron la instalación de energía fotovoltaica desde sus inicios hasta 1997, cuando fueron alcanzados por Japón, que mantuvo el liderato hasta que Alemania la sobrepasó en 2005, manteniendo esa posición desde entonces. A comienzos de 2014 Alemania es, junto a Italia, Japón, China y Estados Unidos, uno de los países donde la fotovoltaica está experimentando un crecimiento más vertiginoso.

 

Alemania

Artículo principal: Energía solar fotovoltaica en Alemania

Alemania es uno de los líderes mundiales en la instalación de energía fotovoltaica, con una potencia instalada a principios de 2015 superior a los 38 gigavatios (GW). Sólo en 2011, Alemania instaló cerca de 7,5 GW,124 y la fotovoltaica produjo 18 TW·h de electricidad, el 3% del total consumido en el país.

El mercado fotovoltaico en Alemania ha crecido considerablemente desde principios del siglo XXI gracias a la creación de una tarifa regulada para la producción de energía renovable, que fue introducida por la "German Renewable Energy Act", ley publicada el año 2000. Desde entonces, el coste de las instalaciones fotovoltaicas ha descendido más del 50% en cinco años, desde 2006. Alemania se ha marcado el objetivo de producir el 35% de la electricidad mediante energías renovables en 2020 y alcanzar el 100% en 2050.

En 2012, las tarifas introducidas costaban a Alemania unos 14 000 millones de euros por año, tanto para las instalaciones eólicas como solares. Este coste es repartido entre todos los contribuyentes mediante un sobrecoste de 3,6 céntimos de € por kWh (aproximadamente el 15% del coste total de la electricidad para el consumidor doméstico).

La considerable potencia instalada en Alemania ha protagonizado varios récords durante los últimos años. Durante dos días consecutivos de mayo de 2012, por ejemplo, las plantas solares fotovoltaicas instaladas en el país produjeron 22 000 MWh en la hora del mediodía, lo que equivale a la potencia de generación de veinte centrales nucleares trabajando a plena capacidad.

Alemania pulverizó este récord el 21 de julio de 2013, con una potencia instantánea de 24 GW a mediodía. Debido al carácter altamente distribuido de la fotovoltaica alemana, aproximadamente 1,3–1,4 millones de pequeños sistemas fotovoltaicos contribuyeron a esta nueva marca. Aproximadamente el 90% de los paneles solares instalados en Alemania se encuentran situados sobre tejado.

En junio de 2014, la fotovoltaica alemana volvió a batir récords durante varios días, al producir hasta el 50,6% de toda la demanda eléctrica durante un solo día, y superar el anterior récord de potencia instantánea hasta los 24,24 GW.

A comienzos de verano de 2011, el Gobierno alemán anunció que el esquema actual de tarifas reguladas concluiría cuando la potencia instalada alcanzase los 52 GW. Cuando esto suceda, Alemania aplicará un nuevo esquema de tarifas de inyección cuyos detalles no se conocen todavía.

No obstante, consciente de que el almacenamiento de energía mediante baterías es indispensable para el despliegue masivo de renovables como la energía eólica o la fotovoltaica, dada su intermitencia, el 1 de mayo de 2013 Alemania puso en marcha un nuevo programa de ayudas para incentivar sistemas fotovoltaicos con baterías de almacenamiento.

De esta manera, se financia a las instalaciones fotovoltaicas menores de 30 kW que instalen baterías y acumulen electricidad, con 660 euros por cada kW de almacenamiento de batería. El programa está dotado con 25 millones de euros anuales repartidos en 2013 y 2014, y de esta forma se logra disponer de la energía cuando el recurso no esté disponible –no haya viento o sea de noche–, además de facilitar la estabilidad del sistema eléctrico.

 

China.

La energía fotovoltaica es una de las mayores industrias de la República Popular China. El país asiático cuenta con unas 400 empresas fotovoltaicas, entre las que destacan Suntech y Yingli, y produce aproximadamente el 23% de los productos fotovoltaicos que se fabrican en el mundo.

La fotovoltaica se ha desarrollado espectacularmente en el país asiático en años recientes, superando incluso las previsiones iniciales. De acuerdo a los planes desvelados en 2007 por la "Comisión para la Reforma y el Desarrollo Nacional" del país, la potencia instalada en el país debía crecer hasta los 1800 MW en 2020. En 2009, Wang Zhongying, un oficial de la Comisión, mencionó en una conferencia solar en Shanghai que este plan podía ser superado ampliamente, llegando incluso a los 10 GW en 2020. En mayo de 2011, la Asamblea Popular Nacional de China estableció 5 GW como el objetivo mínimo oficial para 2015, fijando el objetivo a largo plazo en 20–30 GW para 2020.

A finales de 2011 China dobló su potencia fotovoltaica instalada respecto al año anterior, hasta alcanzar los 2900 MW. Este incremento en la potencia instalada se debió, principalmente, a un crecimiento en el número de instalaciones residenciales. Asimismo, la tarifa de inyección bajó hasta 0,80 yuanes por kWh, lo que significó llegar al mismo nivel de las tarifas aplicables a las plantas de carbón.

Batiendo todas las previsiones, China añadió 5 GW de energía fotovoltaica en 2012, llevando la potencia total instalada en el país hasta un total de más de 8000 MW, y según las previsiones tenía previsto instalar hasta 6,8 GW adicionales más en 2013, superando ampliamente la barrera de los 10 GW. Pulverizando de nuevo todas las estimaciones, a comienzos de 2014 se hizo público que China contaba ya con cerca de 20 GW de potencia fotovoltaica, tras instalar 12 GW a lo largo de 2013, con previsiones adicionales de añadir hasta 14 GW más durante 2014.

Debido a tan rápido crecimiento, las autoridades chinas se han visto obligadas a revaluar en varias ocasiones su objetivo de potencia fotovoltaica para 2015, establecido en 40 GW. La potencia total instalada en China puede crecer hasta los 70 GW en 2017, de acuerdo a los últimos planes de la comisión reguladora del país. Este progresivo aumento indica que seguramente la previsión para 2020 también se verá incrementada, seguramente hasta 100 GW.

Este crecimiento refleja el abrupto descenso de costes de la energía fotovoltaica, que actualmente comienza a ser una opción más barata que otras fuentes de energía, tanto a precios minoristas como comerciales. Fuentes del gobierno chino han afirmado que la fotovoltaica presentará precios más competitivos que el carbón y el gas (aportando además una mayor independencia energética) a finales de esta década.

La capacidad de producción de paneles solares chinos prácticamente se cuadruplicó entre los años 2009 y 2011, superando incluso la demanda mundial. Como resultado, la Unión Europea acusó a la industria china de estar realizando dumping, es decir vendiendo sus paneles a precios por debajo de coste, imponiendo aranceles a la importación de este material.

 

Japón.

La energía fotovoltaica en Japón, se ha expandido rápidamente desde la década de 1990. El país es uno de los líderes en la manufactura de módulos fotovoltaicos y se encuentra entre los 5 primeros en potencia instalada, con casi 7000 MW a finales de 2012, la mayor parte conectada a red. La irradiación en Japón es óptima, situándose entre 4,3 y 4,8 kWh·m²·día, convirtiéndolo en un país idóneo para el desarrollo de este tipo de energía.

La venta de módulos fotovoltaicos para proyectos comerciales ha crecido rápidamente tras la introducción por parte del Gobierno japonés en julio de 2012 de una tarifa para el incentivo de la fotovoltaica tras el accidente nuclear de Fukushima y la paralización de la mayoría de las centrales nucleares que tiene el país. Sólo durante el primer semestre de 2012, se vendieron módulos por un equivalente de 1072 MW, según se desprende de los datos de la Asociación Japonesa de Energía Fotovoltaica (Japan Photovoltaic Energy Association, JPA).

La mayoría de ese volumen (738 MW), procede de fabricantes locales, entre los que destacan Kyocera, Sharp Corporation, Mitsubishi o Sanyo, mientras que 335 MW fueron importados. Tradicionalmente, el mercado fotovoltaico ha estado muy desplazado al segmento residencial, copando hasta el 97% de la capacidad instalada en todo el país hasta 2012. Aunque esta tendencia se está invirtiendo, todavía más del 75% de las células y módulos vendidos en Japón a principios de 2012 tuvieron como destino proyectos residenciales, mientras que cerca del 9% se emplearon en instalaciones fotovoltaicas comerciales.

La potencia total fotovoltaica instalada en Japón superó los 10 GW en agosto de 2013, excediendo los 10,5 GW a finales de ese mes.

 

Italia.

Italia se encuentra entre los primeros países productores de electricidad procedente de energía fotovoltaica. En diciembre de 2012, la potencia total instalada se acercaba a los 17 GW, suponiendo una producción tan importante que varias centrales de gas operaban a mitad de su potencial durante el día. El sector ha llegado a proporcionar trabajo a unas 100 000 personas, especialmente en el sector del diseño e instalación de dichas plantas solares.

La energía total producida mediante fotovoltaica alcanzó en 2011 los 10 730 GWh, cerca de un 3,2% del total de la demanda de electricidad (332,3 TWh). Mientras que durante 2012, la producción fotovoltaica proporcionó el 5,6% del total de la energía consumida en el país durante el año.14 El crecimiento ha sido exponencial: la potencia instalada se triplicó en 2010 y se cuadruplicó en 2011.

La fotovoltaica en Italia ha alcanzado estas cifras gracias al programa de incentivos llamado Conto Energia. Este programa contaba con un presupuesto total de 6700 millones de €, alcanzado dicho límite el Gobierno ha dejado de incentivar las nuevas instalaciones, al haberse alcanzado la paridad de red. Un informe publicado en 2013 por el Deutsche Bank concluía que efectivamente la paridad de red se había alcanzado en Italia y otros países del mundo.

Desde el pasado agosto de 2012 está vigente una nueva legislación que obliga a registrar todas las plantas superiores a 12 kW; las de potencia menor (fotovoltaica de tejado en residencias) están exentas de registro.

 

Estados Unidos.

Artículo principal: Energía solar en los Estados Unidos

Estados Unidos es desde 2010 uno de los países con mayor actividad en el mercado fotovoltaico, y cuenta con numerosas plantas de conexión a red. A mediados de 2013, Estados Unidos superó los 10 GW de potencia fotovoltaica instalada.

Aunque Estados Unidos no mantiene una política energética nacional uniforme en todo el país en lo referente a fotovoltaica, muchos estados han fijado individualmente objetivos en materia de energías renovables, incluyendo en esta planificación a la energía solar en diferentes proporciones. En este sentido, el gobernador de California Jerry Brown ha firmado una legislación requiriendo que el 33% de la electricidad del estado se genere mediante energías renovables a finales de 2020.

Un informe privado recoge que la energía solar fotovoltaica se ha expandido rápidamente durante los últimos 8 años, creciendo a una media del 40% cada año. Gracias a esta tendencia, el coste del kWh producido mediante energía fotovoltaica se ha visto enormemente reducido, mientras que el coste de la electricidad generada mediante combustibles fósiles no ha dejado de incrementar. Como resultado, el informe concluye que la fotovoltaica alcanzará la paridad de red frente a las fuentes de energía convencionales en muchas regiones de Estados Unidos en 2015. Pero para alcanzar una cuota en el mercado energético del 10%, prosigue el informe, las compañías fotovoltaicas necesitarán estilizar aun más las instalaciones, de forma que la energía solar se convierta en una tecnología directamente enchufable ("plug-and-play"). Es decir, que sea sencillo adquirir los componentes de cada sistema y su interconexión sea simple, al igual que su conexión a la red.

Actualmente la mayoría de las instalaciones son conectadas a red y utilizan sistemas de balance neto que permiten el consumo de electricidad nocturno de energía generada durante el día. Nueva Jersey lidera los Estados con la ley de balance neto menos restrictiva, mientras California lidera el número total de hogares con energía solar. Muchos de ellos fueron instalados durante la iniciativa million solar roof (un millón de tejados solares).

FUENTE; wikipedia.org.

 

 

 

 



© 2017 Enersolma, S.L. - NiF B57744666
Registro Mercantil de Baleares; T 2487 , F 140, S 8, H M 33841, I/A 898 (19.06.12)
CVE. BORME-A-2012-123-28

C/ Jaume Bujosa 27

07198 Palma de Mallorca
tel. 678 31 79 12 - 971 427 434

Política de privacidad - contacto - info@enersolma.com
diseño y programación Redbook comunicación